How do you convert 1 - (sqrt3)i1(3)i to polar form?

1 Answer
Nov 30, 2016

In polar form expressed as 2(cos300+isin300)2(cos300+isin300)

Explanation:

Let Z=1- (sqrt3)i Z=1(3)i ; Modulus |Z|=(sqrt(1^2+ (-sqrt3)^2)) =2 ; tan theta = sqrt (-3)/1 or tan theta = sqrt (-3) |Z|=(12+(3)2)=2;tanθ=31ortanθ=3Argument theta =tan^-1(sqrt (-3)) = -60^0 or 300^0θ=tan1(3)=600or3000.

In polar form expressed as |Z|*(costheta+isin theta) or2(cos300+isin300)|Z|(cosθ+isinθ)or2(cos300+isin300)[Ans]