How do you convert 22i1i to polar form?

1 Answer
Sep 19, 2016

22i1i=2(cos(π2)+isin(π2))

Explanation:

Let us write the two complex numbers in polar coordinates and let them be

22i=r1(cosα+isinα) and 1i=r2(cosβ+isinβ)

Then 22i1i is given by

r1(cosα+isinα)(r2(cosβisinβ))r2(cosβ+isinβ)(r2(cosβisinβ)) which when simplified becomes

r1r2(cosαcosβ+sinαsinβ)+i(sinαcosβcosαsinβ)r22(cos2β+sin2β) or

(r1r2)(cos(αβ)+isin(αβ) or

z1z2 is given by (r1r2,(αβ)),

Now as |22i|=22+(2)2=8=22 and 22i=22(12i2)=(cos(7π4)+isin(7π4)

and |1i|=(1)2+(1)2=2 and 1i=2(12i2)=(cos(5π4)+isin(5π4))

Hence, 22i1i=(222)(cos(7π45π4)+isin(7π45π4))

= 2(cos(π2)+isin(π2))