How do you convert (22i)5 to polar form?

1 Answer
Oct 24, 2016

For 2i2, the polar form reiθ is given by

(2,2)=r(cosθ,sinθ).

Here,

r=22+(2)2=22,

cosθ=2r=12>0 and

sinθ=2r=12<0.

The Q4 θ is π4

So, the given expression

(2i2)5

=(22ei(π4))5

=642e5(iπ4)

642ei(2π+34π)

=642ei2πei(34π)

=642(cos(34π)+isin(34π)), using ei2π=1

. .