How do you convert -3+1i to polar form?

1 Answer
Aug 9, 2018

Please see below.

Explanation:

Let ,

z=x+iy=-3+1i=>x=-3 and y=1

Now ,

|z|=r=sqrt(x^2+y^2)=sqrt((-3)^2+(1)^2)=sqrt(9+1)=sqrt10

We have ,

costheta=x/r=(-3)/sqrt10 < 0 and sintheta=y/r=1/sqrt10 > 0

:.costheta < 0 and sintheta > 0=>2^(nd)Quadrant

:.tantheta=sintheta/costheta=((1/sqrt10)/(-3/sqrt10))=-1/3

:.theta=arctan(-1/3)=-arc tan(1/3)~~(-18.43)^circ

So, the polar form :

z=r(costheta+isintheta)

=>z=sqrt10(costheta+isintheta)

,where ,

theta=-arc tan(1/3) ,costheta=-3/sqrt10 and sintheta=1/sqrt10 .