How do you convert 5 sqrt 3 - 5i535i to polar form?

1 Answer
Dec 30, 2016

The answer is =10(cos(-pi/6)+isin(-pi/6))=10(cos(π6)+isin(π6))

Explanation:

Let z=5sqrt3-5iz=535i

We must transform this equation to the form

z=r(cos theta+isintheta)z=r(cosθ+isinθ)

We calculate the modulus of zz

∣z∣=sqrt(25*3+25)=sqrt100=10z=253+25=100=10

z=∣z∣((5sqrt3)/(∣z∣)-i5/(∣z∣))z=z(53zi5z)

z=10(5sqrt3/10-i5/10)z=10(5310i510)

z=10(sqrt3/2-1/2i)z=10(3212i)

Therefore,

costheta=sqrt3/2cosθ=32 and sintheta=-1/2sinθ=12

We are in the 4th quadrant

theta=-pi/6θ=π6

Therefore,

z=10(cos(-pi/6)+isin(-pi/6))z=10(cos(π6)+isin(π6))

z=e^((-ipi)/6)z=eiπ6