In polar form, (rsin theta + r i cos theta) (rsinθ+ricosθ) ... II
Comparing it with -6-6isqrt3−6−6i√3
we get rarr -6 = r sin theta→−6=rsinθ ... 1
rarr -6sqrt3 = r cos theta→−6√3=rcosθ ... 2
Squaring and adding 1 and 2,
r^2 sin^2 theta + r^2 cos^theta = (-6)^2 + (-6sqrt3)^2r2sin2θ+r2cosθ=(−6)2+(−6√3)2
r^2(sin^2 theta + cos^2 theta) = 36 + 108r2(sin2θ+cos2θ)=36+108
r^2 = 144r2=144
r = 12r=12
Dividing equation 1 by 2
tan theta =( -6)/(-6sqrt3)tanθ=−6−6√3
tan theta = 1/sqrt3tanθ=1√3
theta = pi/6θ=π6
Real part of complex no = -6 (-x)−6(−x)
Imaginary part of complex no = -6sqrt3 (-y)−6√3(−y)
:. the point is in 3rd quadrant.
At 3rd quadrant alpha = theta - pi
alpha = (-5pi)/6
Substituting the value in equation I we get,
12(sin ((-5pi)/6)) - i cos ((-5pi)/6))