How do you convert i(6 + 6i) i(6+6i) to polar form?

1 Answer
Aug 19, 2016

(6sqrt2,(3pi)/4)(62,3π4)

Explanation:

To convert from color(blue)"cartesian to polar form"cartesian to polar form

color(orange)"Reminder"Reminder

color(red)(|bar(ul(color(white)(a/a)color(black)(r=sqrt(x^2+y^2))color(white)(a/a)|)))" and "

color(red)(|bar(ul(color(white)(a/a)color(black)(theta=tan^-1(y/x))color(white)(a/a)|)))

The first step, however, is to distribute the bracket.

rArri(6+6i)=6i+6i^2" and " color(red)(|bar(ul(color(white)(a/a)color(black)(i^2=(sqrt(-1))^2=-1)color(white)(a/a)|)))

rArr6i+6i^2=-6+6i

here x = -6 and y = 6

rArrr=sqrt((-6)^2+6^2)=sqrt72=6sqrt2

Now - 6 + 6i is in the 2nd quadrant so we must ensure that theta is in the 2nd quadrant.

theta=tan^-1((6)/-6)=tan^-1(-1)=-pi/4" in 4th quadrant"

rArrtheta=(pi-pi/4)=(3pi)/4" in 2nd quadrant"

rArr-6+6i=(-6,6)to(6sqrt2,(3pi)/4)" in polar form"