How do you convert sqrt3 - sqrt3i to polar form?

1 Answer
Oct 22, 2016

The polar form is sqrt3(cos(-pi/4)+isin(-pi/4))

Explanation:

Let z=sqrt3-isqrt3

Then the modulus of z is ∣z∣=sqrt((sqrt3)^2+ (sqrt3)^2) =sqrt6
Rewriting z

z=∣z∣(sqrt3-isqrt3)=sqrt6((sqrt3/sqrt6)-i(sqrt3/sqrt6))

=sqrt6(1/sqrt2-i/sqrt2)

Comparing this to the standard form z=r(costheta+isintheta)

We see that costheta=1/sqrt2

and sintheta=-1/sqrt2
This can occur in the 4th quadrant and theta =-pi/4

And finally we have z=sqrt6(cos(-pi/4)+sin(-pi/4))

You can also write the resultas z=sqrt6e^(-ipi/4)