How do you convert x2+4x+y2+4y=0 to polar form?

1 Answer
Oct 19, 2016

r+42cos(θπ4)=0

Explanation:

The relation between polar coordinates (r,θ) and rectangular Cartesian coordinates (x,y) are given by

x=rcosθ and y=rsinθ or r2=x2+y2

Hence x2+4x+y2+4y=0 can be written as

x2+y2+4x+4y=0

or r2+4rcosθ+4rsinθ=0

or r2+4r(cosθ+sinθ)=0

or r+4(cosθ+sinθ)=0

or r+42(cosθ×12+sinθ×12)=0

or r+42(cosθcos(π4)+sinθsin(π4))=0

or r+42cos(θπ4)=0