How do you convert x^2+(y-4)^2=16x2+(y−4)2=16 to polar form?
2 Answers
Explanation:
If
Hence,
Explanation:
To convert from Cartesian to Polar coordinates use the following formulae that link them.
• x=rcostheta" and " y=rsintheta∙x=rcosθ and y=rsinθ
x^2+y^2-8y+16=16 " (expanding bracket) "x2+y2−8y+16=16 (expanding bracket)
rArrr^2cos^2theta+r^2sin^2theta-8rsintheta+16-16=0⇒r2cos2θ+r2sin2θ−8rsinθ+16−16=0 then
r^2(cos^2theta+sin^2theta)-8rsintheta=0r2(cos2θ+sin2θ)−8rsinθ=0 using the identity:
cos^2theta+sin^2theta=1 cos2θ+sin2θ=1
rArr r^2=8rsintheta" and dividing both sides by r "⇒r2=8rsinθ and dividing both sides by r
rArr r=8sintheta⇒r=8sinθ