Z=(1-2i)/(6+i)Z=1−2i6+i
Z=a+ib Z=a+ib. Modulus: |Z|=sqrt (a^2+b^2)|Z|=√a2+b2;
Argument:theta=tan^-1(b/a)θ=tan−1(ba) Trigonometrical form :
Z =|Z|(costheta+isintheta)Z=|Z|(cosθ+isinθ)
Z_1= 1-2 i Z1=1−2i.Modulus:|Z|=sqrt(1^2+(-2)^2) |Z|=√12+(−2)2
=sqrt 5 ~~ 2.236=√5≈2.236 Argument: tan alpha= (|-2|)/(|1|)tanα=|−2||1|
=2 =2. alpha =tan^-1 2 = 1.107; Z_1α=tan−12=1.107;Z1 lies on fourth quadrant, so
theta =2pi-alpha=2pi-1.107 ~~ 5.176θ=2π−α=2π−1.107≈5.176
:. Z_1=2.236(cos5.176+isin 5.176) ,
Z_2= 6 + i .Modulus:|Z|=sqrt(6^2+1^2)
=sqrt 37 ~~ 6.083 Argument: tan alpha= (|1|)/(|6|)
=1/6 :.alpha =tan^-1 (1/6) = 0.165 ; Z_2 lies on first quadrant,
:. theta=alpha ~~0.165 :. Z_2=6.083(cos 0.165+isin 0.165)
Z=(1-2i)/(6+i)
Z= (2.236(cos5.176+isin 5.176))/(6.083(cos 0.165+isin 0.165)
Z=0.368(cos(5.176-0.165)+isin (5.176-0.165)) or
Z=0.368(cos 5.011+isin 5.011) =4/37-13/37i
In trigonometric form: 0.368(cos 5.011+isin 5.011) [Ans]