z_1 / z_2 = (r_1 / r_2) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))z1z2=(r1r2)(cos(θ1−θ2)+isin(θ1−θ2))
z_1 = -1 + 4i, z_2 = 3 - 7 iz1=−1+4i,z2=3−7i
r_1 = sqrt(-1^2 + 4^2)^2) = sqrt 17r1=√−12+422)=√17
theta_1 = tan ^-1 (4/ -1) 104.0362^@ , " II Quadrant"θ1=tan−1(4−1)104.0362∘, II Quadrant
r_2 = sqrt(3^2 + (-7)^2) = sqrt 58r2=√32+(−7)2=√58
theta_2 = tan ^-1 (-7/ 3) ~~ 293.1986^@, " IV Quadrant"θ2=tan−1(−73)≈293.1986∘, IV Quadrant
z_1 / z_2 = sqrt(17 / 58) (cos (104.0362 - 293.1986) + i sin (104.0362 - 293.1986))z1z2=√1758(cos(104.0362−293.1986)+isin(104.0362−293.1986))
color(violet)(=> -0.5345 + 0.0862 i, " II Quadrant"⇒−0.5345+0.0862i, II Quadrant