How do you divide (-1+4i)/(3-7i) 1+4i37i in trigonometric form?

1 Answer
Jul 30, 2018

color(violet)(=> -0.5345 + 0.0862 i, " II Quadrant"0.5345+0.0862i, II Quadrant

Explanation:

z_1 / z_2 = (r_1 / r_2) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z_1 = -1 + 4i, z_2 = 3 - 7 iz1=1+4i,z2=37i

r_1 = sqrt(-1^2 + 4^2)^2) = sqrt 17r1=12+422)=17

theta_1 = tan ^-1 (4/ -1) 104.0362^@ , " II Quadrant"θ1=tan1(41)104.0362, II Quadrant

r_2 = sqrt(3^2 + (-7)^2) = sqrt 58r2=32+(7)2=58

theta_2 = tan ^-1 (-7/ 3) ~~ 293.1986^@, " IV Quadrant"θ2=tan1(73)293.1986, IV Quadrant

z_1 / z_2 = sqrt(17 / 58) (cos (104.0362 - 293.1986) + i sin (104.0362 - 293.1986))z1z2=1758(cos(104.0362293.1986)+isin(104.0362293.1986))

color(violet)(=> -0.5345 + 0.0862 i, " II Quadrant"0.5345+0.0862i, II Quadrant