How do you divide (1-6i) / (5-2i) 16i52i in trigonometric form?

1 Answer
Jul 9, 2018

color(green)(=> 0.5861 - 0.9656 i)0.58610.9656i

Explanation:

z_1 / z_2 = (r_1 / r_2) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z_1 = 1 - 6 i, z_2 = 5 - 2 iz1=16i,z2=52i

r_1 = sqrt(1^2 + -6^2) = sqrt 37r1=12+62=37

theta_1 = tan ^ (-1) (-6/1) ~~ 279.46 ^@, " IV Quadrant"θ1=tan1(61)279.46, IV Quadrant

r_2 = sqrt(5^2 + (-2)^2) = sqrt 29r2=52+(2)2=29

theta_2 = tan ^-1 (-2/ 5) ~~ 338.2^@, " IV Quadrant"θ2=tan1(25)338.2, IV Quadrant

z_1 / z_2 = sqrt(37/29) (cos (279.46- 338.2) + i sin (279.46- 338.2))z1z2=3729(cos(279.46338.2)+isin(279.46338.2))

color(green)(=> 0.5861 - 0.9656 i)0.58610.9656i