How do you divide (2-4i)/(5+8i) 24i5+8i in trigonometric form?

1 Answer
Jul 4, 2016

(2-4i)/(5+8i)=sqrt(20/89)(costheta+isintheta)24i5+8i=2089(cosθ+isinθ), where theta=tan^(-1)(18/11)θ=tan1(1811)

Explanation:

Let us write the two complex numbers in polar coordinates and let them be

z_1=r_1(cosalpha+isinalpha)z1=r1(cosα+isinα) and z_2=r_2(cosbeta+isinbeta)z2=r2(cosβ+isinβ)

Here, if two complex numbers are a_1+ib_1a1+ib1 and a_2+ib_2a2+ib2 r_1=sqrt(a_1^2+b_1^2)r1=a21+b21, r_2=sqrt(a_2^2+b_2^2)r2=a22+b22 and alpha=tan^(-1)(b_1/a_1)α=tan1(b1a1), beta=tan^(-1)(b_2/a_2)β=tan1(b2a2)

Their division leads us to

{r_1/r_2}{(cosalpha+isinalpha)/(cosbeta+isinbeta)}{r1r2}{cosα+isinαcosβ+isinβ} or

{r_1/r_2}{(cosalpha+isinalpha)/(cosbeta+isinbeta)xx(cosbeta-isinbeta)/(cosbeta-isinbeta)}{r1r2}{cosα+isinαcosβ+isinβ×cosβisinβcosβisinβ}

(r_1/r_2){(cosalphacosbeta+sinalphasinbeta)+i(sinalphacosbeta-cosalphasinbeta))/((cos^2beta+sin^2beta))(r1r2)(cosαcosβ+sinαsinβ)+i(sinαcosβcosαsinβ)(cos2β+sin2β) or

(r_1/r_2)*(cos(alpha-beta)+isin(alpha-beta))(r1r2)(cos(αβ)+isin(αβ)) or

z_1/z_2z1z2 is given by (r_1/r_2, (alpha-beta))(r1r2,(αβ))

So for division complex number z_1z1 by z_2z2 , take new angle as (alpha-beta)(αβ) and modulus the ratio r_1/r_2r1r2 of the modulus of two numbers.

Here 2-4i24i can be written as r_1(cosalpha+isinalpha)r1(cosα+isinα) where r_1=sqrt(2^2+(-4)^2)=sqrt20r1=22+(4)2=20 and alpha=tan^(-1)(-4/2)=tan^(-1)(-2)α=tan1(42)=tan1(2)

and 5+8i5+8i can be written as r_2(cosbeta+isinbeta)r2(cosβ+isinβ) where r_2=sqrt(5^2+8^2)=sqrt89r2=52+82=89 and beta=tan^(-1)(8/5)β=tan1(85)

and z_1/z_2=sqrt20/(sqrt89)(costheta+isintheta)z1z2=2089(cosθ+isinθ), where theta=alpha-betaθ=αβ

Hence, tantheta=tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)=((-2)-(8/5))/(1+(-2)xx(8/5))=(-18/5)/(-11/5)=18/11tanθ=tan(αβ)=tanαtanβ1+tanαtanβ=(2)(85)1+(2)×(85)=185115=1811.

Hence, (2-4i)/(5+8i)=sqrt(20/89)(costheta+isintheta)24i5+8i=2089(cosθ+isinθ), where theta=tan^(-1)(18/11)θ=tan1(1811)