How do you divide 2i13i+5 in trigonometric form?

1 Answer
May 21, 2016

2i13i+5=534(cosρ+isinρ) where ρ=tan113

Explanation:

Let us first write (2i1) and (3i+5) in trigonometric form.

a+ib can be written in trigonometric form reiθ=rcosθ+irsinθ=r(cosθ+isinθ),
where r=a2+b2 and tanθ=ba or θ=arctan(ba)

Hence 2i1=(1+2i)=(1)2+22[cosα+isinα] or

5eiα, where tanα=64=21=2 and

3i+5=(5+3i)=52+32[cosβ+isinβ] or

34eiβ, where tanβ=35

Hence 2i13i+5=5eiα34eiβ=534ei(αβ)=534(cos(αβ)+isin(αβ))

Now, tan(αβ)=tanαtanβ1+tanαtanβ

= 2351+(2)(35) = 13515=13551=13

Hence 2i13i+5=534(cosρ+isinρ) where ρ=tan113