How do you divide ( 2i-1) / ( -i -1 )2i1i1 in trigonometric form?

1 Answer

\sqrt{5/2}(\cos108.435^\circ-\sin 108.435^\circ)52(cos108.435sin108.435)

Explanation:

Given that

\frac{2i-1}{-i-1}2i1i1

=\frac{1-2i}{1+i}=12i1+i

=\frac{(1-2i)(1-i)}{(1+i)(1-i)}=(12i)(1i)(1+i)(1i)

=\frac{1-3i+2i^2}{1-i^2}=13i+2i21i2

=\frac{1-3i+2(-1)}{1+1}=13i+2(1)1+1

=\frac{-1-3i}{2}=13i2

=-1/2-3/2i=1232i

Amplitude =\sqrt{(-1/2)^2+(-3/2)^2}=\sqrt{5/2}=(12)2+(32)2=52

Argument, \theta=-(\pi-\tan^{-1}|\frac{-3/2}{-1/2}|)θ=(πtan1∣ ∣3212∣ ∣)

\theta=-108.435^\circθ=108.435

\therefore \frac{2i-1}{-i-1}

=\sqrt{5/2}(\cos(-108.435^\circ)+i\sin(-108.435^\circ))

=\sqrt{5/2}(\cos108.435^\circ-\sin 108.435^\circ)