How do you divide 2i45i6 in trigonometric form?

1 Answer
Feb 18, 2018

2i45i6=561cis(tan1(1629))

Explanation:

Letz1=2i4,where,
r1=22+(1)2=5
θ1=tan1(42)

Letz2=5i6,where,
r1=52+(6)2=61
θ1=tan1(65)

Now,

z1=5(cis(tan1(42)))

z2=61(cis(tan1(65)))

2i45i6=z1z2=5(cis(tan1(42)))61(cis(tan1(65)))
=561cis(tan1(42))cis(tan1(65))

561=561
By De-Moivre's Theorem,

cis(tan1(42))cis(tan1(65))=cis(tan1(42)tan1(65))

tan1(42)tan1(65)=tan142651+(42)(65)

4265=265=1065=165

1+(42)(65)=1+245=5+245=295

Hence,
tan142651+(42)(65)=tan1(165295)=tan1(1629)

Thus,

2i45i6=561cis(tan1(1629))