How do you divide 2i612i+4 in trigonometric form?

1 Answer
May 19, 2016

(2i6)÷(12i+4)=12(cosρ+isinρ) where ρ=tan1(53)

Explanation:

Let us first write (2i6) and (12i+4) in trigonometric form.

a+ib can be written in trigonometric form reiθ=rcosθ+irsinθ=r(cosθ+isinθ),
where r=a2+b2 and tanθ=ba or θ=arctan(ba)

Hence 2i6=(6+2i)=(6)2+22[cosα+isinα] or

40eiα, where tanα=13 and

12i+4=(412i)=42+(12)2[cosβ+isinβ] or

160eiβ, where tanβ=124=3

Hence (2i6)÷(12i+4)=40eiα160eiβ=14ei(αβ)=ei(αβ)2=12(cos(αβ)+isin(αβ))

Now, tan(αβ)=tanαtanβ1+tanαtanβ

= 13+(3)1+(13)(3)=1032=53

Hence (2i6)÷(12i+4)=12(cosρ+isinρ) where ρ=tan1(53)