How do you divide (2i-7) / (-2i+6)2i72i+6 in trigonometric form?

1 Answer
Jul 8, 2018

color(maroon)((-7 + 2i) / (6 - 2i) = -1.15 - 0.05i)7+2i62i=1.150.05i

Explanation:

z_1 / z_2 = (|r_1| / |r_2|) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))z1z2=(|r1||r2|)(cos(θ1θ2)+isin(θ1θ2))

z_1 = -7 + 2i , z_2 = 6 - 2i z1=7+2i,z2=62i

|r_1| = sqrt(-7^2 + 2^2) = sqrt 53|r1|=72+22=53

theta_1 = tan ^ (-1) (2/-7) = 164.05 ^@ " II Quadrant"θ1=tan1(27)=164.05 II Quadrant

|r_2| = sqrt(6^2 + (2)^2) = sqrt 40|r2|=62+(2)2=40

theta_2 = tan ^-1 (-2/ 6) = 341.57^@ , " IV Quadrant"θ2=tan1(26)=341.57, IV Quadrant

z_1 / z_2 = |sqrt(53/40)| * (cos (164.05- 341.57) + i sin (164.05- 341.57))z1z2=5340(cos(164.05341.57)+isin(164.05341.57))

color(maroon)((-7 + 2i) / (6 - 2i) = -1.15 - 0.05i)7+2i62i=1.150.05i