z_1 / z_2 = (|r_1| / |r_2|) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))z1z2=(|r1||r2|)(cos(θ1−θ2)+isin(θ1−θ2))
z_1 = -7 + 2i , z_2 = 6 - 2i z1=−7+2i,z2=6−2i
|r_1| = sqrt(-7^2 + 2^2) = sqrt 53|r1|=√−72+22=√53
theta_1 = tan ^ (-1) (2/-7) = 164.05 ^@ " II Quadrant"θ1=tan−1(2−7)=164.05∘ II Quadrant
|r_2| = sqrt(6^2 + (2)^2) = sqrt 40|r2|=√62+(2)2=√40
theta_2 = tan ^-1 (-2/ 6) = 341.57^@ , " IV Quadrant"θ2=tan−1(−26)=341.57∘, IV Quadrant
z_1 / z_2 = |sqrt(53/40)| * (cos (164.05- 341.57) + i sin (164.05- 341.57))z1z2=∣∣∣√5340∣∣∣⋅(cos(164.05−341.57)+isin(164.05−341.57))
color(maroon)((-7 + 2i) / (6 - 2i) = -1.15 - 0.05i)−7+2i6−2i=−1.15−0.05i