How do you divide ( 2i-9) / ( -7 i + 7 )2i97i+7 in trigonometric form?

1 Answer
Apr 27, 2018

z=a+biz=a+bi = r[z]e^(i*arctan(b/a))r[z]eiarctan(ba) by definition,
for a,b,r[z] in RR, i = sqrt(-1) , and r[z] = sqrt(a^2+b^2)
so for complex numbers u=v+iw and z=a+bi,
(u/z) = (r[u])/(r[z]] e^(i(arctan(w/v)-arctan(b/a))

In this case:
u=2i-9 = sqrt(2^2+9^2)*e^(i*arctan(-2/9))=9.2195e^(-.2187i)
z=7-7i = sqrt(2*(7^2))*e^(i*arctan(-1))=9.899e^(-.25ipi)

So:
((2i-9)/(-7i+7)) = (9.2195/9.899) e^(i*(-.2187-.25*pi)
= 0.9314*e^(-1.0041i)