How do you divide 34i5+2i in trigonometric form?

1 Answer
Apr 26, 2018

529(cos(0.540)+isin(0.540))0.79+0.48i

Explanation:

34i5+2i=3+4i5+2i

z=a+bi can be written as z=r(cosθ+isinθ), where

  • r=a2+b2
  • θ=tan1(ba)

For z1=3+4i:
r=32+42=5
θ=tan1(43)=0,927

For z2=5+2i:
r=52+22=29
θ=tan1(25)=0.381

For z1z2:
z1z2=r1r2(cos(θ1θ2)+isin(θ1θ2))

z1z2=529(cos(0.9210.381)+isin(0.9210.381))

z1z2=529(cos(0.540)+isin(0.540))=0.79+0.48i

Proof:
3+4i5+2i52i52i=15+20i6i+825+4=23+14i29=0.79+0.48i