How do you divide 3+5i2i in trigonometric form?

1 Answer
Aug 15, 2017

3+5i2i=15170(cos2.57+isin2.57)

Explanation:

3+5i2i=(3+5i)(2+i)(2i)(2+i)=11+7i5=115+75i

Use mod-arg form, a+bi=r(cosϑ+isinϑ) where r=1152+752=345=15170 and ϑ=arctan(75115)+π=2.57c