To divide (-1 + 3 i) / (3 - 8i)−1+3i3−8i using trigonometric form.
z_1 = (-1 + 3 i), z_2 = (3 - 8i)z1=(−1+3i),z2=(3−8i)
#r_1 = sqrt(3^2 + 1^2) = sqrt 10
r_2 = sqrt(87^2 + -3^2) = sqrt 73r2=√872+−32=√73
theta_1 = arctan (-3/1) = 108.43^@, " II quadrant"θ1=arctan(−31)=108.43∘, II quadrant
Theta_2 = arctan(-8/3) = 290.56^@, " IV quadrant"
z_1 / z_2 = (r_1 / r_2) * (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))
z_1 / z_2 = sqrt(10/53) * (cos (108.43 - 290.56 ) + i sin (108.43 - 290.56 ))
z_1 / z_2 = sqrt910/53) * (cos (-172.13) + i sin (-172.13))
color(maroon)((-1 + 3i) / (3 - 8i) ~~ -0.3666 - i 0.0508