How do you divide ( 3i-1) / (-8i +3 )3i18i+3 in trigonometric form?

1 Answer
Jun 28, 2018

color(maroon)((-1 + 3i) / (3 - 8i) ~~ -0.3666 - i 0.05081+3i38i0.3666i0.0508

Explanation:

To divide (-1 + 3 i) / (3 - 8i)1+3i38i using trigonometric form.

z_1 = (-1 + 3 i), z_2 = (3 - 8i)z1=(1+3i),z2=(38i)

#r_1 = sqrt(3^2 + 1^2) = sqrt 10

r_2 = sqrt(87^2 + -3^2) = sqrt 73r2=872+32=73

theta_1 = arctan (-3/1) = 108.43^@, " II quadrant"θ1=arctan(31)=108.43, II quadrant

Theta_2 = arctan(-8/3) = 290.56^@, " IV quadrant"

z_1 / z_2 = (r_1 / r_2) * (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))

z_1 / z_2 = sqrt(10/53) * (cos (108.43 - 290.56 ) + i sin (108.43 - 290.56 ))

z_1 / z_2 = sqrt910/53) * (cos (-172.13) + i sin (-172.13))

color(maroon)((-1 + 3i) / (3 - 8i) ~~ -0.3666 - i 0.0508