How do you divide 3i18i4 in trigonometric form?

1 Answer
Mar 2, 2016

122×ei(αβ), where α=tan1(3) and β=tan1(2)

Explanation:

(a+bi) an be written in as a2+b2ei(tan1(ba))

Hence, (3i1)=(1+3i)=12+32(eitan1(31))=10eitan1(3)

Similarly, (8i4)=(4+8i)=42+82(eitan1(84))=80eitan1(2)

Hence 3i18i4=10eitan1(3)80eitan1(2)

or 18×ei(tan1(3))(tan1(2)) or

122×ei(αβ), where α=tan1(3) and β=tan1(2)