Let's start by solving this in the form given and see what we get:
Multiply the conjugate of the denominator:
( -3i+2) / (-1-i)*(-1+i)/(-1+i)=(3i-2-3i^2+2i)/(1-i^2)=(5i+1)/2=5/2i+1/2
1/2+5/2i
We can convert this to trigonometric form by finding r:
r=sqrt(a^2+b^2)
theta=arctan(b/a)
r=sqrt((1/2)^2+(5/2)^2)
r= sqrt26/2
theta=arctan(5)
thetaapprox78.69^@
So we can say the solution in trig form is
z=sqrt26/2(cos(78.69^@)+isin(78.69^@))
Let's double check by solving in trigonometric form:
z_1= 2-3i
r= sqrt((2)^2+(-3)^2)
r= sqrt(13)
theta= arctan(-3/2)approx-56.31^@approx303.69^@
z_2=-1-i
r= sqrt((-1)^2+(-1)^2)
r=sqrt2
theta= arctan(-1/-1)= 45^@, however this in the third quadrant so+180^@= 225^@
z_1/z_2= (sqrt13(cos(303.69^@)+isin(303.69^@)))/(sqrt2(cos(225^@)+isin(225^@))
WHEN DIVIDING IN TRIGONOMETRIC FORM:
Divide the r by the other r
And subtract the angles
sqrt13/sqrt2*sqrt2/sqrt2= sqrt26/2
303.69^@-225^@= 78.69^@
So same solution:
z= sqrt26/2(cos(78.69^@)+isin(78.69^@))