How do you divide 3i73i9 in trigonometric form?

1 Answer
Jun 24, 2018

0.8028(0.7475i0.6643)

Explanation:

z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z1=7+i3,z2=9i3

r1=72+32=58

θ1=tan1(37)=tan1(37)=23.2=156.8, II Quadrant

r2=92+32=90

θ2=tan39=tan1(13)=18.43198.43, III Quadrant

z1z2=5890(cos(156.8198.43)+isin(156.8198.43))

0.8028(0.7475i0.6643)