How do you divide 3i+77i+8 in trigonometric form?

1 Answer
Jun 24, 2018

0.7164(0.3138+i0.9495)

Explanation:

z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z1=7+i3,z2=8i7

r1=72+32=58

θ1=tan1(73)=66.8

r2=82+(7)2=113

θ2=tan1(78)=41.19=318.51, IV Quadrant

z1z2=58113(cos(66.8318.51)+isin(66.8318.51))

0.7164(0.3138+i0.9495)