How do you divide 3i+8i+4 in trigonometric form?

1 Answer
May 21, 2016

6i43i5=7317(cosρ+isinρ) where ρ=tan1(435)

Explanation:

Let us first write (3i+8) and (i+4) in trigonometric form.

a+ib can be written in trigonometric form reiθ=rcosθ+irsinθ=r(cosθ+isinθ),
where r=a2+b2 and tanθ=ba or θ=arctan(ba)

Hence 3i+8=(8+3i)=82+32[cosα+isinα] or

73eiα, where tanα=38 and

i+4=(4+i)=42+12[cosβ+isinβ] or

17eiβ, where tanβ=14

Hence 3i+8i+4=73eiα17eiβ=7317ei(αβ)=7317(cos(αβ)+isin(αβ))

Now, tan(αβ)=tanαtanβ1+tanαtanβ

= 38141+3814=181+332=183235=435

Hence 6i43i5=7317(cosρ+isinρ) where ρ=tan1(435)