How do you divide (-4+2i)/(3-i) 4+2i3i in trigonometric form?

1 Answer
Jul 2, 2018

color(maroon)((-4 + 2i) / (3 - i) ~~ -1.4 - 0.2 i4+2i3i1.40.2i

Explanation:

To divide (-4 + 2 i) / (3 - i)4+2i3i using trigonometric form.

z_1 = (-4 + 2 i), z_2 = (3 - i)z1=(4+2i),z2=(3i)

#r_1 = sqrt(-4^2 + 2^2) = sqrt 20

r_2 = sqrt(3^2 + -1^2) = sqrt 10r2=32+12=10

theta_1 = arctan (2/-4) = 153.43^@, " II quadrant"θ1=arctan(24)=153.43, II quadrant

Theta_2 = arctan(-1/3) = 341.57^@, " IV quadrant"

z_1 / z_2 = (r_1 / r_2) * (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))

z_1 / z_2 = sqrt(10/20) * (cos (153.43 - 341.57 ) + i sin (153.43 - 341.57 )

z_1 / z_2 = sqrt(20/10) * (cos (-188.14) + i sin (-188.14))

color(maroon)((-4 + 2i) / (3 - i) ~~ -1.4 - 0.2 i