How do you divide 4+5i1+6i in trigonometric form?

1 Answer

137(34+19i)

Explanation:

We have

4+5i1+6i

=41ei(πtan1(54))37ei(πtan1(6))

=4137(ei(πtan1(54))ei(πtan1(6)))

=4137(ei(tan1(6)tan1(54)))

=4137eitan1(1934)

=4137(cos(tan1(1934))+isin(tan1(1934)))

=4137(341517+i191517)

=4137×1517(34+19i)

=137(34+19i)