How do you divide (-4+5i) / (2+i) 4+5i2+i in trigonometric form?

1 Answer

(-4+5i)/(2+i)4+5i2+i
in trigonometric form is
(r1)/(r2)cis(theta1-theta2)r1r2cis(θ1θ2)
where,
r1 = sqrt(((-4)^2+5^2))r1=((4)2+52)
theta1 =tan^-1(5/(-4))θ1=tan1(54)
and
r2 = sqrt((2^2+1^2))r2=(22+12)
theta1 =tan^-1(1/2)θ1=tan1(12)

Explanation:

Divide (-4+5i)/(2+i)4+5i2+i
in trigonometric form
Expressing numerator and denominator as
z = r cis thetaz=rcisθ
For z1=-4+5iz1=4+5i
r1 = sqrt(((-4)^2+5^2))r1=((4)2+52)
theta1 =tan^-1(5/(-4))θ1=tan1(54)
For z2=2+iz2=2+i
r2 = sqrt((2^2+1^2))r2=(22+12)
theta1 =tan^-1(1/2)θ1=tan1(12)
Thus,
(-4+5i)/(2+i)=(r1cistheta1)/(r2cistheta2)4+5i2+i=r1cisθ1r2cisθ2
=(r1)/(r2)(cistheta1)/(cistheta2)=r1r2cisθ1cisθ2
By De-Moivre's theorem,
(cistheta1)/(cistheta2)=cis(theta1-theta2)cisθ1cisθ2=cis(θ1θ2)
Now,
(-4+5i)/(2+i)=(r1)/(r2)cis(theta1-theta2)4+5i2+i=r1r2cis(θ1θ2)