Divide (-4+5i)/(2+i)−4+5i2+i
in trigonometric form
Expressing numerator and denominator as
z = r cis thetaz=rcisθ
For z1=-4+5iz1=−4+5i
r1 = sqrt(((-4)^2+5^2))r1=√((−4)2+52)
theta1 =tan^-1(5/(-4))θ1=tan−1(5−4)
For z2=2+iz2=2+i
r2 = sqrt((2^2+1^2))r2=√(22+12)
theta1 =tan^-1(1/2)θ1=tan−1(12)
Thus,
(-4+5i)/(2+i)=(r1cistheta1)/(r2cistheta2)−4+5i2+i=r1cisθ1r2cisθ2
=(r1)/(r2)(cistheta1)/(cistheta2)=r1r2cisθ1cisθ2
By De-Moivre's theorem,
(cistheta1)/(cistheta2)=cis(theta1-theta2)cisθ1cisθ2=cis(θ1−θ2)
Now,
(-4+5i)/(2+i)=(r1)/(r2)cis(theta1-theta2)−4+5i2+i=r1r2cis(θ1−θ2)