How do you divide 4+5i6+i in trigonometric form?

1 Answer
Jun 15, 2018

1.05(0.482+i0.876)

Explanation:

z1z2=r1r2(cos(θ1+thet2)+isin(θ1+θ2)

z1=(4+i5),z2=(6+i)

r1=42+52=41=6.4

θ1=tan1(54)=51.34=128.26, II Quadrant

r2=12+62=37=6.08

θ2=tan1(16)=9.46

z1z2=4137(cos(128.269.46)+isin(128.269.46)0

1.05(0.482+i0.876)