How do you divide 48i9+i in trigonometric form?

1 Answer
Feb 13, 2016

R=.337+915i

Explanation:

R=C1C2, where C1=48i and C2=9+i
Convert each complex number to its polar form:
C1=|C1|θ1andC2=|C2|θ2
Then, R=|C1||C2|θ1θ2
C1=42+(8)2=80;C2=92+(1)2=82
θ1=tan1(2);θ2=tan1(19);
θR=θ1θ2=tan1(2)tan1(19)=1.218 rads
Thus R=.975(θR=1.218) this is now in the polar form
R=rθR;r=.975 the magnitude of R,θR=69.775o
Now you can convert back to the rectangular coordinate
R=rx+ry;Rx=|r|cosθR+|r|sinθR
rx=.975cos69.8.337;ry=.975sin(69.8).915
R.337+915i