How do you divide (-4+9i)/(1-5i) 4+9i15i in trigonometric form?

1 Answer
Jul 17, 2017

(-4+9i)/(1-5i)=1/26sqrt2522(cos167-isin167)4+9i15i=1262522(cos167isin167)

Explanation:

(-4+9i)/(1-5i)=((-4+9i)(1+5i))/((1-5i)(1+5i))=(-4-11i-45)/(26)=(-11i-49)/26=-49/26-11/26i4+9i15i=(4+9i)(1+5i)(15i)(1+5i)=411i4526=11i4926=49261126i

Trigonometric form of a complex number:

a+bi=r(cosvartheta+isinvartheta)a+bi=r(cosϑ+isinϑ), where r=sqrt(a^2+b^2)r=a2+b2 and vartheta=arctan(b/a)ϑ=arctan(ba)

sqrt(49/26^2+11/26^2)=1/26sqrt252249262+11262=1262522

arctan((-11/26)/(-49/26))approx-167^@arctan(11264926)167

therefore-49/26-11/26i=1/26sqrt2522(cos(-167)+isin(-167))

which can be rewritten as 1/26sqrt2522(cos167-isin167)