How do you divide (-4-9i)/(6-2i) in trigonometric form?

1 Answer
Apr 19, 2018

" "
color(blue)(z=(sqrt(970))/20)color(blue)([cos 264^@ + i* sin 264^@]

Explanation:

" "
Let color(red)(Z_1 = r_1(Cos theta_1 + i*sin theta_1)

Let color(red)(Z_2 = r_2(Cos theta_2 + i*sin theta_2)

color(blue)((Z_1/Z_2) = (r_1/r_2)[cos (theta_1 - theta_2)+i*sin(theta_1 - theta_2)]

Consider the problem given:

color(green)(Z_1 = (-4-9i) and

color(green)(Z_2 = (6-2i)

In complex numbers,

we know that i=sqrt(-1) and i^2=(-1)

Z_1/Z_2=(-4-9i)/(6-2i)

Multiply and divide by the Conjugate of the denominator to simplify.

Z_1/Z_2=(-4-9i)/(6-2i)*color(red)((6+2i)/(6+2i)

rArr [-24-8i-54i-18(i^2)]/(36-(2i)^2

rArr [-24-62i+18]/[(36+4)]

rArr (-62i-6)/40

rArr (2(-31i-3))/(2*20)

rArr (cancel 2(-31i-3))/(cancel 2*20)

rArr (-3-31i)/20

color(blue)( :. Z_1/Z_2= -(3/20)-(31/20)i

enter image source here

Express color(blue)(r in terms of color(blue)(a and b.

Using Pythagoras Theorem,

r^2=(a^2+b^2)

r=sqrt(a^2+b^2)

|z|=a+bi

|z| = sqrt(a^2+b^2

sin(theta)=b/r

rArr color(red)( b=r*sin(theta)

cos(theta) = a/r

rArr color(red)( a=r*sin(theta)

We already have

color(blue)( Z_1/Z_2= -(3/20)-(31/20)i

|z|=sqrt((-3/20)^2+(-31/20)^2

Simplifying you get

rArr sqrt(970/400

rArr sqrt(970)/20

To find color(red)(theta

theta = tan^-1[(-31/20)/(-3/(20)]]

Using the calculator to simplify, you get

theta ~~ 84.47245985^@

:. theta ~~ 84.5^@

You have to add 180 to the angle when you recognize that the angle lies in the third quadrant.

Hence theta ~~84.5^@ + 180^@

rArr theta ~~ 264^@

Hence, the final representation of Z will be

color(red)(Z=sqrt(970)/20[cos(264^@)+i*sin(264^@)]

Hope it helps.