How do you divide ( 4i+1) / (-8i +3 )4i+18i+3 in trigonometric form?

1 Answer
Jun 28, 2018

color(blue)((1 + 4i) / (3 - 8i) ~~ 0.4388 + i 0.23851+4i38i0.4388+i0.2385

Explanation:

To divide (1 +4 i) / (3 - 8i)1+4i38i using trigonometric form.

z_1 = (1 +4 i), z_2 = (3 - 8i)z1=(1+4i),z2=(38i)

#r_1 = sqrt(4^2 + 1^2) = sqrt 17

r_2 = sqrt(3^2 + -8^2) = sqrt 73r2=32+82=73

theta_1 = arctan (4/1) = 75.96^@, " I quadrant"θ1=arctan(41)=75.96, I quadrant

Theta_2 = arctan(-8/3) = 290.56^@, " IV quadrant"

z_1 / z_2 = (r_1 / r_2) * (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))

z_1 / z_2 = sqrt(17/73) * (cos (75.96 - 290.56 ) + i sin (75.96 - 290.56 ))

z_1 / z_2 = 0.4826 * (cos (-204.6) + i sin (-204.6))

color(blue)((1 + 4i) / (3 - 8i) ~~ 0.4388 + i 0.2385