To divide (1 +4 i) / (3 - 8i)1+4i3−8i using trigonometric form.
z_1 = (1 +4 i), z_2 = (3 - 8i)z1=(1+4i),z2=(3−8i)
#r_1 = sqrt(4^2 + 1^2) = sqrt 17
r_2 = sqrt(3^2 + -8^2) = sqrt 73r2=√32+−82=√73
theta_1 = arctan (4/1) = 75.96^@, " I quadrant"θ1=arctan(41)=75.96∘, I quadrant
Theta_2 = arctan(-8/3) = 290.56^@, " IV quadrant"
z_1 / z_2 = (r_1 / r_2) * (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))
z_1 / z_2 = sqrt(17/73) * (cos (75.96 - 290.56 ) + i sin (75.96 - 290.56 ))
z_1 / z_2 = 0.4826 * (cos (-204.6) + i sin (-204.6))
color(blue)((1 + 4i) / (3 - 8i) ~~ 0.4388 + i 0.2385