How do you divide ( 4i+1) / (-8i +5 ) in trigonometric form?

1 Answer
Mar 30, 2017

0.315i - 0.303

Explanation:

First, convert both the numerator and denominator into polar form.

Converting 4i+1 to polar:

r = sqrt(4^2 + 1^2) = sqrt17
theta = tan^-1(4/1) = 75.96^@

4i + 1 = sqrt17 color(white)"-" angle color(white)"."75.96^@

Converting -8i + 5 to polar:

r = sqrt((-8)^2 + 5^2) = sqrt89
theta = tan^-1(-8/5) = -57.99^@

-8i + 5 = sqrt89 color(white)"-" angle color(white)"."-57.99^@

Dividing in polar form:

(sqrt17 color(white)"-" angle color(white)"."75.96^@) / ( sqrt89 color(white)"-" angle color(white)"."-57.99^@) = sqrt17/sqrt89 color(white)"-" angle color(white)"-" (75.96-(-57.99))^@

= sqrt17/sqrt89 color(white)"-" angle color(white)"." 133.95^@

Now to convert back to rectangular:

Re = r cos theta = sqrt17 / sqrt89 cos133.95^@ = -0.303

Im = ri sin theta = sqrt17/sqrt89 i color(white)"." sin133.95^@ = 0.315i

So the final answer is 0.315i - 0.303