How do you divide 4i+2i+7 in trigonometric form?

1 Answer
May 6, 2016

In trigonometric form : 0.632[cos(71.565)+isin(71.565)]

Explanation:

4i+2i+7=(4i+2)(i7)(i+7)(i7)=4i214+30ii272=(150)(10+30i)=0.20.6i. Let Z=0.20.6i Modulas Z= 0.22+(0.6)2=.632 Argument Z θ=tan1(0.60.2)=tan1(3)=71.5650 Hence Z expressed in trigonometric form: 0.632[cos(71.565)+isin(71.565)][Ans]