How do you divide (5+2i)/(7+i) 5+2i7+i in trigonometric form?

1 Answer
Apr 10, 2017

Division of two complex numbers in trigonometric form is defined as:

(r_1(cos(theta_1)+isin(theta_1)))/(r_2(cos(theta_2)+isin(theta_2)))= r_1/r_2(cos(theta_1-theta_2)+isin(theta_1-theta_2))r1(cos(θ1)+isin(θ1))r2(cos(θ2)+isin(θ2))=r1r2(cos(θ1θ2)+isin(θ1θ2))

Explanation:

Given: (5+2i)/(7+i)5+2i7+i

We need to convert the dividend and the divisor into trigonometric form.

r_1=sqrt(a_1^2+b_1^2)r1=a21+b21

r_1=sqrt(5^2+2^2)r1=52+22

r_1=sqrt(25+4)r1=25+4

r_1=sqrt(29)r1=29

Because the signs of "a" and "b" are in the 1st quadrant, we use the equation:

theta_1 = tan^-1(b_1/a_1)θ1=tan1(b1a1)

theta_1=tan^-1(2/5)θ1=tan1(25)

Note: We would have add piπ for the 2nd or 3rd quadrant and 2pi2π for the 4th.

r_2=sqrt(a_2^2+b_2^2)r2=a22+b22

r_2=sqrt(7^2+1^2)r2=72+12

r_2=sqrt(49+1)r2=49+1

r_2=sqrt(50)r2=50

Because the signs of "a" and "b" are in the 1st quadrant, we use the equation:

theta_2 = tan^-1(b_2/a_2)θ2=tan1(b2a2)

theta_2=tan^-1(1/7)θ2=tan1(17)

(5+2i)/(7+i)=5+2i7+i=

(sqrt(29)(cos(tan^-1(2/5))+isin(tan^-1(2/5))))/(sqrt(50)(cos(tan^-1(1/7))+isin(tan^-1(1/7))))=29(cos(tan1(25))+isin(tan1(25)))50(cos(tan1(17))+isin(tan1(17)))=

sqrt(29/50)(cos(tan^-1(2/5)-tan^-1(1/7))+isin(tan^-1(2/5)-tan^-1(1/7)))2950(cos(tan1(25)tan1(17))+isin(tan1(25)tan1(17)))