How do you divide 6i+52i+6 in trigonometric form?

1 Answer
Jun 15, 2018

1.235(0.8503i0.526)

Explanation:

z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z1=5i6,z2=6i2

r1=52+62=61

θ1=arctan(65)=309.81, IV Quadrant

r2=62+22=40

θ2=arctan(26)=341.57, IV Quadrant

z1z2=(6140(cos(309.81341.57)+isin(129.81161.57)

1.235(0.8503i0.5264)