How do you divide 6i37i4 in trigonometric form?

1 Answer

31313[cos(tan1(118))+isin(tan1(118))] OR

31313[cos(356.82016988014)+isin(356.82016988014)]

Explanation:

Convert to Trigonometric forms first

3+6i=35[cos(tan1(63))+isin(tan1(63))]

4+7i=65[cos(tan1(74))+isin(tan1(74))]

Divide equals by equals

3+6i4+7i=

(4565)[cos(tan1(63)tan1(74))+isin(tan1(63)tan1(74))]

Take note of the formula:

tan(AB)=tanAtanB1+tanAtanB

also

AB=tan1(tanAtanB1+tanAtanB)

31313[cos(tan1(118))+isin(tan1(118))]

31313[cos(6.2276868019339)+isin(6.2276868019339)] radian angles

31313[cos(356.82016988014)+isin(356.82016988014)]