How do you divide ( 6i+5) / ( 7 i -4 )6i+57i4 in trigonometric form?

1 Answer
Feb 14, 2018

In trigonometric form: 0.969(cos 1.214-isin 1.214)0.969(cos1.214isin1.214)

Explanation:

(5+6i)/(-4+7i)5+6i4+7i Z=a+ib Z=a+ib. Modulus: |Z|=sqrt (a^2+b^2)|Z|=a2+b2;

Argument:theta=tan^-1(b/a)θ=tan1(ba) Trigonometrical form :

Z =|Z|(costheta+isintheta) ; Z= 5+6 i Z=|Z|(cosθ+isinθ);Z=5+6i.

Modulus:|Z|=sqrt(5^2+6^2)~~ 7.81 |Z|=52+627.81

Argument: tan alpha= (|6|)/(|5|):. alpha = tan^-1 (1.2)=0.876

Z_1 lies on first quadrant, so theta =alpha ~~ 0.876

:. Z_1=7.81(cos 0.876+isin 0.876)

Z_2= -4 + 7i . Modulus:|Z|=sqrt(4^2+7^2)

=sqrt 65 ~~ 8.062 Argument: tan alpha= (|7|)/(|-4|)

=7/4 :.alpha =tan^-1 (7/4) = 1.052 ; Z_2 lies on second

quadrant.:. theta=pi-alpha ~~2.09

:. Z_2=8.062(cos 2.09+isin 2.09) :. (5+6i)/(-4+7i) =

Z= (7.81(cos0.876+isin 0.876))/(8.062(cos 2.09+isin 2.09)

Z=0.969(cos(0.876-2.09)+isin (0.876-2.09)) or

Z=0.0969(cos 1.214-isin 1.214) =22/65-59/65i

In trigonometric form: 0.969(cos 1.214-isin 1.214) [Ans]