How do you divide (-7-2i) / (5-6i) in trigonometric form?

1 Answer
Jul 3, 2018

color(maroon)((7 - 2i) / (5 - 6i) = -0.377 - 0.8524 i

Explanation:

z_1 / z_2 = (|r_1| / |r_2|) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))

z_1 = -7 - 2i , z_2 = 5 - 6i

|r_1| = sqrt(-7^2 + 2^2) = sqrt 53

theta_1 = tan ^ (-1) (-2/-7) = 195.95 ^@ " III Quadrant"

|r_2| = sqrt(5^2 + (-6)^2) = sqrt 61

theta_2 = tan ^-1 (-6/ 5) = 309.81^@ , " IV Quadrant"

z_1 / z_2 = |sqrt(53/61)| * (cos (195.95- 309.81) + i sin (195.95- 309.81))

color(maroon)((7 - 2i) / (5 - 6i) = 0.9321 ( -0.4045 - i 0.9145)