z_1 / z_2 = (|r_1| / |r_2|) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))
z_1 = -7 - 2i , z_2 = 5 - 6i
|r_1| = sqrt(-7^2 + 2^2) = sqrt 53
theta_1 = tan ^ (-1) (-2/-7) = 195.95 ^@ " III Quadrant"
|r_2| = sqrt(5^2 + (-6)^2) = sqrt 61
theta_2 = tan ^-1 (-6/ 5) = 309.81^@ , " IV Quadrant"
z_1 / z_2 = |sqrt(53/61)| * (cos (195.95- 309.81) + i sin (195.95- 309.81))
color(maroon)((7 - 2i) / (5 - 6i) = 0.9321 ( -0.4045 - i 0.9145)