(7+4i)/(-1+i)=(z_1)/(z_2)7+4i−1+i=z1z2
rho_1=sqrt(7^2+4^2)=sqrt(49+16)=sqrt(65)ρ1=√72+42=√49+16=√65
theta_1=arctan(4/7)θ1=arctan(47)
rho_1=sqrt(1^2+1^2)=sqrt(1+1)=sqrt(2)ρ1=√12+12=√1+1=√2
theta_1=arctan((-1)/1)=arctan(-1)=((3pi)/4),θ1=arctan(−11)=arctan(−1)=(3π4),
color(blue)((z_1)/(z_2)=(rho_1)/(rho_2)*e^[(theta_1-theta_2i)]z1z2=ρ1ρ2⋅e(θ1−θ2i)
(z_1)/(z_2)=(sqrt(65))/sqrt(2)*e^(arctan(4/7i)-(3pi)/4i)z1z2=√65√2⋅earctan(47i)−3π4i
(z_1)/(z_2)=(sqrt(65/2))*e^((arctan(4/7)-(3pi)/4))iz1z2=(√652)⋅e(arctan(47)−3π4)i
(z_1)/(z_2)~~~5.701*e^(-1.837i)z1z2≈~5.701⋅e−1.837i