How do you divide (7+4i)/(-1+i) 7+4i1+i in trigonometric form?

1 Answer
Jan 12, 2018

(sqrt(65/2))*e^((arctan(4/7)-(3pi)/4)i)(652)e(arctan(47)3π4)i

Explanation:

(7+4i)/(-1+i)=(z_1)/(z_2)7+4i1+i=z1z2

rho_1=sqrt(7^2+4^2)=sqrt(49+16)=sqrt(65)ρ1=72+42=49+16=65
theta_1=arctan(4/7)θ1=arctan(47)

rho_1=sqrt(1^2+1^2)=sqrt(1+1)=sqrt(2)ρ1=12+12=1+1=2
theta_1=arctan((-1)/1)=arctan(-1)=((3pi)/4),θ1=arctan(11)=arctan(1)=(3π4),

color(blue)((z_1)/(z_2)=(rho_1)/(rho_2)*e^[(theta_1-theta_2i)]z1z2=ρ1ρ2e(θ1θ2i)

(z_1)/(z_2)=(sqrt(65))/sqrt(2)*e^(arctan(4/7i)-(3pi)/4i)z1z2=652earctan(47i)3π4i

(z_1)/(z_2)=(sqrt(65/2))*e^((arctan(4/7)-(3pi)/4))iz1z2=(652)e(arctan(47)3π4)i

(z_1)/(z_2)~~~5.701*e^(-1.837i)z1z2~5.701e1.837i