How do you divide 74i3+2i in trigonometric form?

1 Answer
Mar 2, 2016

5×ei(αβ), where α=tan1(47) and β=tan1(23)

Explanation:

(a+bi) an be written in as a2+b2ei(tan1(ba))

Hence, (74i)=72+42(eitan1(47))=65eitan1(47)

Similarly, (3+2i)=32+22(eitan1(23))=13eitan1(23)

Hence 74i3+2i=65eitan1(47)13eitan1(23)

or 5×ei(tan1(47))(tan1(23)) or

5×ei(αβ), where α=tan1(47) and β=tan1(23)