How do you divide 7+5i13i in trigonometric form?

1 Answer
Jul 26, 2018

0.8+2.6i, II QUADRANT

Explanation:

z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z1=7+5i,z2=13i

r1=72+522)=74

θ1=tan1(57)=35.5377=, I Quadrant

r2=12+(3)2=10

θ2=tan1(31)288.4349, IV Quadrant

z1z2=7410(cos(35.5377288.4349)+isin(35.5377288.4349))

0.8+2.6i, II QUADRANT