How do you divide 79i29i in trigonometric form?

1 Answer

44217[cos(tan1(8167))+isin(tan1(8167))] OR

44217[cos(50.403791360249)+isin(50.403791360249)]

Explanation:

Convert to Trigonometric forms first

79i=130[cos(tan1(97))+isin(tan1(97))]

29i=85[cos(tan1(92))+isin(tan1(92))]

Divide equals by equals

79i29i=

(13085)[cos(tan1(97)tan1(92))+isin(tan1(97)tan1(92))]

Take note of the formula:

tan(AB)=tanAtanB1+tanAtanB

also

AB=tan1(tanAtanB1+tanAtanB)

44217[cos(tan1(8167))+isin(tan1(8167))]

have a nice day!