Z=(7-i)/(3-i)
Z=a+ib . Modulus: |Z|=sqrt (a^2+b^2);
Argument:theta=tan^-1(b/a) Trigonometrical form :
Z =|Z|(costheta+isintheta)
Z_1= 7- i .Modulus:|Z_1|=sqrt(7^2+(-1)^2)
=sqrt 50 ~~ 7.07 Argument: tan alpha= ((|-1|))/(|7|)
=1/7 , alpha =tan ^-1 (1/7) ~~ 0.142, Z lies on fourth quadrant,
so theta =2pi-alpha=2pi-0.142 ~~ 6.14
:. Z_1=7.07(cos 6.14+i sin 6.14) ,
Z_2= 3- i .Modulus:|Z_2|=sqrt(3^2+(-1)^2)
=sqrt 10 ~~ 3.16 Argument: tan alpha= ((|-1|))/(|3|)
=1/3 , alpha =tan ^-1 (1/3) ~~0.322, Z lies on fourth quadrant,
so theta =2pi-alpha=2pi-0.322 ~~ 5.96
:. Z_2=3.16(cos 5.96+i sin 5.96) ,
Z=(7-i)/(3-i)
Z= (7.07(cos 6.14+i sin 6.14))/(3.16(cos 5.96+i sin 5.96)
Z=2.236(cos(6.14-5.96)+isin (6.14-5.96)) or
Z=2.236(cos 0.18+i sin 0.18) =2.2+0.4 i
In trigonometric form; 2.236(cos 0.18+i sin 0.18) [Ans]