How do you divide (7-i) / (3-i) in trigonometric form?

1 Answer
Aug 11, 2018

In trigonometric form: 2.236(cos 0.18+i sin 0.18)

Explanation:

Z=(7-i)/(3-i)

Z=a+ib . Modulus: |Z|=sqrt (a^2+b^2);

Argument:theta=tan^-1(b/a) Trigonometrical form :

Z =|Z|(costheta+isintheta)

Z_1= 7- i .Modulus:|Z_1|=sqrt(7^2+(-1)^2)

=sqrt 50 ~~ 7.07 Argument: tan alpha= ((|-1|))/(|7|)

=1/7 , alpha =tan ^-1 (1/7) ~~ 0.142, Z lies on fourth quadrant,

so theta =2pi-alpha=2pi-0.142 ~~ 6.14

:. Z_1=7.07(cos 6.14+i sin 6.14) ,

Z_2= 3- i .Modulus:|Z_2|=sqrt(3^2+(-1)^2)

=sqrt 10 ~~ 3.16 Argument: tan alpha= ((|-1|))/(|3|)

=1/3 , alpha =tan ^-1 (1/3) ~~0.322, Z lies on fourth quadrant,

so theta =2pi-alpha=2pi-0.322 ~~ 5.96

:. Z_2=3.16(cos 5.96+i sin 5.96) ,

Z=(7-i)/(3-i)

Z= (7.07(cos 6.14+i sin 6.14))/(3.16(cos 5.96+i sin 5.96)

Z=2.236(cos(6.14-5.96)+isin (6.14-5.96)) or

Z=2.236(cos 0.18+i sin 0.18) =2.2+0.4 i

In trigonometric form; 2.236(cos 0.18+i sin 0.18) [Ans]