How do you divide 7i+1i6 in trigonometric form?

1 Answer
Jul 26, 2018

0.0271.1622i, IV QUADRANT

Explanation:

z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z1=1+7i,z2=6+i

r1=12+722)=50

θ1=tan1(71)=81.8699=, I Quadrant

r2=62+(1)2=37

θ2=tan1(16)170.5377, II Quadrant

z1z2=5037(cos(81.8699170.5377)+isin(81.8699170.5377))

0.0271.1622i, IV QUADRANT