How do you divide ( 7i+5) / ( -3i +8 )7i+53i+8 in trigonometric form?

1 Answer
Jun 25, 2018

color(blue)((5 + 7i) / (8 - 3i) ~~ 0.2603 - i 0.97285+7i83i0.2603i0.9728

Explanation:

To divide (5 +7 i) / (8 - 3i)5+7i83i using trigonometric form.

z_1 = (5 +7 i), z_2 = (8 - 3i)z1=(5+7i),z2=(83i)

#r_1 = sqrt(5^2 + 7^2) = sqrt 74

r_2 = sqrt(8^2 + -3^2) = sqrt 73r2=82+32=73

theta_1 = arctan (7/5) = 54.46^@, " I quadrant"θ1=arctan(75)=54.46, I quadrant

Theta_2 = arctan(-3/8) = 339.44^@, " IV quadrant"

z_1 / z_2 = (r_1 / r_2) * (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))

z_1 / z_2 = sqrt(74/73) * (cos (54.46 - 339.44 ) + i sin (54.46 - 339.44 ))

z_1 / z_2 = 1.007 * (cos (-284.98) + i sin (-284.98)) = 1.007 (0.2585 - i 0.966)

color(blue)((5 + 7i) / (8 - 3i) ~~ 0.2603 - i 0.9728